Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

本篇开始为物理学服务。以下,“幺正变换”=“等距同构”,“厄密”=“自伴” 有限群(线性)表示基本定义群$G$的矩阵表示,指从$G$到一般线性群$GL_n$的同态。即:把群中每个元素都同态地对应到一个方阵:$g\mapsto D(g)$,这些方阵的集合对矩阵乘法作成一个群$D(G)$,称为$G$的群表示。这些方阵代表一个$n$维线性空间到自己的映射,该$n$维线性空间称为...

有限交换群在Sylow定理的帮助下,有限交换群已经可以被分解成Sylow子群的直积了,但实际上会有更好的结论:“有限交换群基本定理”与“不变因子定理”。在本篇的帮助下,我们将完全描述有限交换群(和先前的循环群一样,在同构意义下完全知道其结构) 有限交换群基本定理有限交换群$G$($|G|>1$)都可以被唯一分解成“素数幂次”阶循环群的直积:$$G=\braket{a_1}\o...

Sylow 定理该内容与上篇Cauchy定理的内容联系紧密,与中间的自同构等没啥关系。本篇相当于Cauchy定理的后续发展 铺垫与引理重陪集 设$H,K$为群$G$的两个子群,令$x\in G$,则称$G$的子集$HxK$为群$G$关于子群$H,K$的一个重陪集 引理1 对群$G$任二重陪集,若$HxK\cap HyK\neq\varnothing$,则必有$HxK= HyK$ 该...

正规同态应用到群时…借助同态,可以判定一个代数结构是否是群: 定理:设$G$是一个群,$\bar{G}$是一个有代数运算的集合,如果$G\sim \bar{G}$,则$\bar{G}$也是群,而且$G$的单位元的像就是$\bar{G}$的单位元,$G$中元素的逆元的像就是该元素像的逆元。 就像一个线性映射从$V\to W$,则$\text{range}T$是$W$的子空间,$\text{nu...

陪集、指数陪集的定义与性质左陪集的定义:设$H\leq G$,取$a\in G$则称$aH:=\{ax|x\in H\}$为群$G$关于子群$H$的一个左陪集则称$Ha:=\{xa|x\in H\}$为群$G$关于子群$H$的一个右陪集 陪集就像是线代中仿射子集的抽象,如仿射子集不是子空间(除了过原点的那个),这里的陪集也不是子群(除了$H$本身) 如同在Done Rig...

基本概念代数运算定义:有一个法则使得在集合$M$中任意两个有次序的元素,在$M$中都有唯一的元素对应,则该法则是$M$的一个代数运算 含有代数运算的集合称为代数系统 注意:由定义可知,“有代数运算”已经包含了运算的封闭 运算律值得注意厘清“结合律”与“记号的定义”之间关系: eg. 证明变换的乘法满足结合律: $$\begin{align*} [(\sigma\tau)\varphi] (...