Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Topology拓扑基本概念这些例子解开了数学家们心中的谜:“一个集合和一扇门究竟有什么不同呢?” 拓扑的基定义 (拓扑) 集合$X$上的拓扑(topology)指:有一个子集构成的集合$\mathscr{T}$,开集(open sets)定义为它其中的元素,满足: $\varnothing$和$X$本身是开集 开集的有限交仍是开集 开集的任意并仍是开集 定义了拓扑的集合,就升格...

微分几何入门微广 by 梁灿彬 拓扑空间基本的拓扑知识回忆 定义 拓扑集合$X$上的拓扑指:有一个其子集构成的集合$\mathscr{T}$,开集就定义为它其中的元素,满足: 空集和$X$本身是开集 开集的有限交仍是开集 开集的任意并仍是开集 我们知道,在一般的拓扑空间中,连续的定义是“开集的逆像仍开”,而在度量空间上这等价于$\epsilon-\delta$的连续定义,梁老画图给...

统计学习方法熵信息熵定义对于一个随机变量$X$而言,其可能取值为$x_1,x_2,x_n\dots$,其取到的概率分别为$p_1,p_2,\dots p_n$那么定义其熵为(此处的$\log$底数是2):$$H(X):=-\sum_{i=1}^n p_i\log p_i$$其含义是什么呢?把这个随机变量想成一个“数据”序列,例如$x_4 x_8 x_3 x_9 x_5 x...

基本概念代数运算定义:有一个法则使得在集合$M$中任意两个有次序的元素,在$M$中都有唯一的元素对应,则该法则是$M$的一个代数运算 含有代数运算的集合称为代数系统 注意:由定义可知,“有代数运算”已经包含了运算的封闭 运算律值得注意厘清“结合律”与“记号的定义”之间关系: eg. 证明变换的乘法满足结合律: $$\begin{align*} [(\sigma\tau)\varphi] (...