电动力学
电磁学的“公理体系”
公理体系陈述
本节需作为规则接受:
1. 坐标与度规
规定 (四维坐标) 规定时空中一点用四维坐标$(x^0,x^1,x^2,x^3)$来描述,它与时间$t$的关系是$x^0 = ct$,且$(x^1,x^2,x^3)$就是空间坐标
规定 (洛伦兹度规) 规定度规张量$g$的分量如下:
$$
g_{\mu\nu} = \begin{cases}
-1 & (\mu,\nu) = (0,0)
\\
1 & (\mu,\nu) \in \set{(1,1),(2,2),(3,3)}
\\
0 & \text{else}
\end{cases}
$$
2. 电磁场表征方法
规定 (势矢量) 该规则说,“势”这个物理量实体是用一个1形式场$\mathcal{A} = \mathcal{A}_\mu dx^\mu$来描述的。具体来说,它与熟知的电势$\phi$与磁矢势$\vec{A}$之间的关系为:$\mathcal{A}_0 = -\frac{1}{c}\phi$,$(\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3) = \vec{A}$
规定 (电磁张量) 该规则指定,电磁场是用微分形式来描述的。电场与磁场真正的“实体”,是2形式场$\mathcal{F}$,由公式$\mathcal{F}=d\mathcal{A}$给出。表达式可以写为:$\mathcal{F} = \frac{1}{2!} \mathcal{F} _ {\mu\nu} dx^\mu \wedge dx^\nu$。那么,就有关系$\mathcal{F} _ {\mu\nu} = \partial _ \mu \mathcal{A} _ \nu -\partial _ \nu \mathcal{A} _ \mu $
电场强度$\vec{E}$与磁感应强度$\vec{B}$被这个$\mathcal{F}$确定。具体来说,$\mathcal{F}$的各个分量与$\vec{E}$与$\vec{B}$的各个分量有关,定量关系如下:
$$
\begin{align*}
\mathcal{F} =& −\frac{E_1}{c}dx^0\wedge dx^1 − \frac{E_2}{c}dx^0\wedge dx^2 − \frac{E_3}{c}dx^0\wedge dx^3 \\
& + B_3 dx^1\wedge dx^2−B_2dx^1\wedge dx^3+B_1 dx^2\wedge dx^3
\end{align*}
$$
3. 带电物质表征方法
规定 (带电物质) 该规则指定,带电物质也是用微分形式来描述的。电流与电荷密度作为一整个“实体”,是3形式场$\mathcal{J}$,具体形式如下:
$$
\mathcal{J} = Z_0 \rho dx^1\wedge dx^2\wedge dx^3 - \mu_0 J^1 dx^0 \wedge dx^2 \wedge dx^3 + \mu_0 J^2 dx^0 \wedge dx^1 \wedge dx^3 - \mu_0 J^3 dx^0 \wedge dx^1 \wedge dx^2
$$
其中$Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}$,称做真空阻抗。从这个$\mathcal{J}$出发,就可以用其分量确定电荷密度$\rho$以及电流密度$\vec{J} = (J^1,J^2,J^3)$
4. 一个恒等式
规定 (一个恒等式) 电磁张量与带电物质满足如下规则,其中$\ast$是Hodge对偶的意思:$d(\ast \mathcal{F}) = \mathcal{J}$
5. 等效原理
规定 (等效原理) 两组坐标$\set{x^\mu}$与$\set{x’^\mu}$之间满足这一个恒等关系:$g_{\mu\nu} dx^\mu dx^\nu = g_{\mu\nu} dx’^\mu dx’^\nu $
“公理体系”的推论
利用上面的规则,我们可以“推导”出整个电动力学
运动方程
定理 (运动方程) 有如下两个方程成立,用来描述电磁场的运动规律:
1. $d\mathcal{F} = 0$
2. $d(\ast \mathcal{F}) = \mathcal{J}$
证明:
1. 根据规定(电磁张量)$\mathcal{F} = d\mathcal{A}$,则根据外微分作用两次$d \circ d = 0 $的数学性质,可知$d\mathcal{F} = 0$
2. 根据规定(一个恒等式),得知第二个式子成立
电磁场与势的关系
定理 (电磁场与势的关系)
场与势满足的是如下关系:
$$
\begin{cases}
\vec{E} = -\frac{\partial}{\partial t }\vec{A}- \nabla \phi \\
\vec{B} = \nabla \times \vec{A}
\end{cases}
$$
证明:利用公式$\mathcal{F} = d\mathcal{A}$,展开:
$$
\begin{align*}
d\mathcal{A} = &\frac{\partial A_1}{\partial x^0} dx^0\wedge dx^1 + \frac{\partial A_2}{\partial x^0} dx^0\wedge dx^2+\frac{\partial A_3}{\partial x^0} dx^0\wedge dx^3 \\
& -\frac{1}{c}\frac{\partial \phi}{\partial x^1} dx^1\wedge dx^0 + \frac{\partial A_2}{\partial x_1} dx^1 \wedge dx^2 + \frac{\partial A_3}{\partial x_1} dx^1 \wedge dx^3 \\
& -\frac{1}{c}\frac{\partial \phi}{\partial x^2} dx^2\wedge dx^0 + \frac{\partial A_1}{\partial x_2} dx^2 \wedge dx^1 + \frac{\partial A_3}{\partial x_2} dx^2 \wedge dx^3 \\
& -\frac{1}{c}\frac{\partial \phi}{\partial x^3} dx^3\wedge dx^0 + \frac{\partial A_1}{\partial x_3} dx^3 \wedge dx^1 + \frac{\partial A_2}{\partial x_3} dx^3 \wedge dx^2
\\
= & \left(\frac{\partial A_1}{\partial x^0} + \frac{1}{c}\frac{\partial \phi}{\partial x^1}\right)dx^0\wedge dx^1 +(\dots)dx^0\wedge dx^2+(\dots)dx^0\wedge dx^3
\\
& + \left(\frac{\partial A_2}{\partial x_1}-\frac{\partial A_1}{\partial x_2} \right) dx^1 \wedge dx^2+(\dots)dx^1\wedge dx^3+(\dots)dx^2\wedge dx^3
\end{align*}
$$
然后,比对$\mathcal{F}_{\mu\nu}$即得证
电荷守恒公式
定理 (电荷守恒) $\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$
证明: 根据刚才的定理(运动方程),$d \mathcal{J} = d (d (\ast \mathcal{F}))$,根据外微分作用两次$d \circ d = 0 $的数学性质,可知$d\mathcal{J}=0$。因此,按照外微分定义写出$d\mathcal{J}=0$如下:
$$
\begin{align*}
0 =& Z_0 \frac{\partial \rho}{\partial x^0} dx^0 \wedge dx^1\wedge dx^2\wedge dx^3 - \mu_0 \frac{\partial J^1}{\partial x^1} dx^1\wedge dx^0 \wedge dx^2 \wedge dx^3 + \newline
&\mu_0\frac{\partial J^2}{\partial x^2} dx^2 \wedge dx^0 \wedge dx^1 \wedge dx^3 - \mu_0 \frac{\partial J^3}{\partial x^3} dx^3\wedge dx^0 \wedge dx^1 \wedge dx^2
\end{align*}
$$按照奇偶排列的符号调整上式的正负号,即得到:
$$
\begin{align*}
0 =&\left[ Z_0 \frac{\partial \rho}{\partial x^0} + \mu_0 \left(\frac{\partial J^1}{\partial x^1} + \frac{\partial J^2}{\partial x^2}+ \frac{\partial J^3}{\partial x^3}\right)\right] dx^0 \wedge dx^1\wedge dx^2\wedge dx^3
\end{align*}
$$
因此方括号中的系数为零,即:$c\frac{\partial \rho}{\partial x^0}+\frac{\partial J^1}{\partial x^1} + \frac{\partial J^2}{\partial x^2}+ \frac{\partial J^3}{\partial x^3} = 0$回顾$ct=x^0$的关系,上式即为$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$
Maxwell方程
定理 (第一组Maxwell方程) $$
\begin{cases}
\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \newline
\nabla \times \vec{B} - \epsilon_0\mu_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J}
\end{cases}
$$
证明:先给$\mathcal{F}$取Hodge对偶,下面的符号中,$\varepsilon_{\sigma\rho\mu\nu}$是适配体元的分量
- 注:事实上适配体元就是$\sqrt{\vert g \vert} dx^0\wedge dx^1\wedge dx^2\wedge dx^3$,但是为了写成含有希腊字母的样子,其分量可以写为$\varepsilon_{\sigma\rho\mu\nu} = \sqrt{\vert g \vert} \epsilon_{\sigma\rho\mu\nu}$
对偶后的$\ast\mathcal{F}$,其分量由下式给出:
$$
(\ast \mathcal{F}) _ {\mu\nu} = \frac{1}{2!}\mathcal{F}^{\sigma\rho}\varepsilon_{\sigma\rho\mu\nu}
$$写的具体一些:
$$
(\ast \mathcal{F}) _ {\mu\nu} = \frac{1}{2!} g^{\kappa\sigma} g^{\lambda\rho} \mathcal{F} _ {\kappa\lambda} \sqrt{\vert g \vert} \epsilon _ {\sigma\rho\mu\nu}
$$比如$(\ast \mathcal{F}) _ {01} = \frac{1}{2!} g^{\kappa\sigma} g^{\lambda\rho} \mathcal{F} _ {\kappa\lambda} \sqrt{\vert g \vert} \epsilon _ {\sigma\rho 0 1}$,我们用死算的方法计算一下,仅仅需讨论$(\sigma,\rho)\in \set{(2,3),(3,2)}$两种(因为根据Levi-Civita符号的定义,取别的都是零),得到:
$$
\begin{align*}
(\ast \mathcal{F}) _ {01} &= \frac{1}{2!} (g^{\kappa 2} g^{\lambda 3} \mathcal{F} _ {\kappa\lambda} \sqrt{\vert g \vert} \epsilon _ {2 3 0 1} + g^{\kappa 3} g^{\lambda 2} \mathcal{F} _ {\kappa\lambda} \sqrt{\vert g \vert} \epsilon _ {3 2 0 1})\\
&= \frac{1}{2!} (g^{2 2} g^{3 3} \mathcal{F} _ {23} \sqrt{\vert g \vert} \epsilon _ {2 3 0 1} + g^{3 3} g^{2 2} \mathcal{F} _ {32} \sqrt{\vert g \vert} \epsilon _ {3 2 0 1}) \\
& = \frac{1}{2}\left(B_1+B_1\right) = B_1
\end{align*}
$$同理,$(\ast \mathcal{F}) _ {02} = B_2$,$(\ast \mathcal{F}) _ {03} = B_3$,$(\ast \mathcal{F}) _ {12} = E_3/c$,$(\ast \mathcal{F}) _ {13}= -E_2/c$,$(\ast \mathcal{F}) _ {23} = E_1/c$
总之
$$
\begin{align*}
(\ast \mathcal{F}) & = \frac{1}{2!}(\ast \mathcal{F}) _ {\mu\nu} dx^\mu \wedge dx^\nu \\ & = B _ 1 dx^0\wedge dx^1 + B _ 2 dx^0\wedge dx^2 + B _ 3 dx^0\wedge dx^3 \\
& + \frac{E _ 3}{c} dx^1\wedge dx^2−\frac{E _ 2}{c}dx^1\wedge dx^3+ \frac{E _ 1}{c} dx^2\wedge dx^3
\end{align*}
$$接着,求其外微分:
$$
\begin{align*}
d(\ast \mathcal{F}) =& \left(\partial_2 B_1 - \partial_1 B_2 + \frac{1}{c} \partial_0 E_1 \right)dx^0\wedge dx^1\wedge dx^2 + \left( \partial_3 B_1-\partial_1 B_3 - \frac{1}{c}\partial_0 E_2\right) dx^0 \wedge dx^1\wedge dx^3 \\
& + \left(\partial_3 B_2 - \partial_ 2 B_3 +\frac{1}{c}\partial_0 E_1\right) dx^0 \wedge dx^2\wedge dx^3 +\frac{1}{c}\left(\partial_3 E_3 + \partial_2 E_2 +\partial_1 E_1\right) dx^1\wedge dx^2 \wedge dx^3
\end{align*}
$$
根据规定(运动方程),上式与$\mathcal{J}$相等,因此其对应系数相等,即得到:
$$
\begin{cases}
\frac{1}{c}\left(\partial_3 E_3 + \partial_2 E_2 +\partial_1 E_1\right) = Z_0 \rho \\
\partial_2 B_1 - \partial_ 1 B _ 2 +\frac{1}{c}\partial_0 E_1 + \mu_0 J^3 = 0 \\
-\partial_3 B_1+\partial_1 B_3 + \frac{1}{c}\partial_0 E_2 +\mu_0 J^2 = 0 \\
\partial_3 B_2 - \partial_ 2 B_3 +\frac{1}{c}\partial_0 E_1 +\mu_0 J^1 = 0
\end{cases}
$$此即Maxwell方程的其中两个
$\square$
定理 (第二组Maxwell方程) $$
\begin{cases}
\nabla \times \vec{E} +\frac{\partial \vec{B}}{\partial t}=0\newline
\nabla \cdot \vec{B} = 0
\end{cases}
$$
证明:直接对$\mathcal{F}$求外微分得到:
$$
\begin{align*}
d\mathcal{F} =& \left( \partial _0 B_3 -\frac{1}{c} (\partial_2 E_1 -\partial_1 E_2) \right ) dx^0\wedge dx^1\wedge dx^2 + \left( -\partial _0 B_2 +\frac{1}{c} (\partial_1 E_3 -\partial_3 E_1) \right ) dx^0\wedge dx^1\wedge dx^3 \\
& +\left( \partial _0 B_1 -\frac{1}{c} (\partial_3 E_2 -\partial_2 E_3) \right ) dx^0\wedge dx^2\wedge dx^3 +\left( \partial_1 B_1 +\partial_2 B_2 +\partial_3 B_3 \right) dx^1\wedge dx^2\wedge dx^3
\end{align*}
$$根据规定(运动方程),上式等于零,故:
$$
\begin{cases}
\partial _0 B_1 -\frac{1}{c} (\partial_3 E_2 -\partial_2 E_3)= 0 \\
\partial _0 B_2 -\frac{1}{c} (\partial_1 E_3 -\partial_3 E_1) = 0 \\
\partial _0 B_3 -\frac{1}{c} (\partial_2 E_1 -\partial_1 E_2) =0 \\
\partial_1 B_1 +\partial_2 B_2 +\partial_3 B_3 = 0
\end{cases}
$$
此即Maxwell方程组中的两个式子$\square$